Selasa, 16 Maret 2010
hidrodinamika
hidrostatik
Tekanan statik di dalam fluida
Karena sifatnya yang tidak dapat dengan mudah dimampatkan, fluida dapat menghasilkan tekanan normal pada semua permukaan yang berkontak dengannya. Pada keadaan diam (statik), tekanan tersebut bersifat isotropik, yaitu bekerja dengan besar yang sama ke segala arah. Karakteristik ini membuat fluida dapat mentransmisikan gaya sepanjang sebuah pipa atau tabung, yaitu, jika sebuah gaya diberlakukan pada fluida dalam sebuah pipa, maka gaya tersebut akan ditransmisikan hingga ujung pipa. Jika terdapat gaya lawan di ujung pipa yang besarnya tidak sama dengan gaya yang ditransmisikan, maka fluida akan bergerak dalam arah yang sesuai dengan arah gaya resultan.
Konsepnya pertama kali diformulasikan, dalam bentuk yang agak luas, oleh matematikawan dan filsuf Perancis, Blaise Pascal pada 1647 yang kemudian dikenal sebagai Hukum Pascal. Hukum ini mempunyai banyak aplikasi penting dalam hidrolika. Galileo Galilei, juga adalah bapak besar dalam hidrostatika.
[sunting] Tekanan hidrostatik
Sevolume kecil fluida pada kedalaman tertentu dalam sebuah bejana akan memberikan tekanan ke atas untuk mengimbangi berat fluida yang ada di atasnya. Untuk suatu volume yang sangat kecil, tegangan adalah sama di segala arah, dan berat fluida yang ada di atas volume sangat kecil tersebut ekuivalen dengan tekanan yang dirumuskan sebagai berikut
dengan (dalam satuan SI),
P adalah tekanan hidrostatik (dalam pascal);
ρ adalah kerapatan fluida (dalam kilogram per meter kubik);
g adalah percepatan gravitasi (dalam meter per detik kuadrat);
h adalah tinggi kolom fluida (dalam meter).
fluida
Fluida adalah sub-himpunan dari fase benda, termasuk cairan, gas, plasma, dan padat plastik.
Fluida memilik sifat tidak menolak terhadap perubahan bentuk dan kemampuan untuk mengalir (atau umumnya kemampuannya untuk mengambil bentuk dari wadah mereka). Sifat ini biasanya dikarenakan sebuah fungsi dari ketidakmampuan mereka mengadakan tegangan geser(shear stress) dalam ekuilibrium statik. Konsekuensi dari sifat ini adalah hukum Pascal yang menekankan pentingnya tekanan dalam mengkarakterisasi bentuk fluid. Dapat disimpulkan bahwa fluida adalah zat atau entitas yang terdeformasi secara berkesinambungan apabila diberi tegangan geser walau sekecil apapun tegangan geser itu.
Fluid dapat dikarakterisasikan sebagai:
- bergantung dari cara "stress" bergantung ke "strain" dan turunannya.
Fluida juga dibagi menjadi cairan dan gas. Cairan membentuk permukaan bebas (yaitu, permukaan yang tidak diciptakan oleh bentuk wadahnya), sedangkan gas tidak.
titik berat
STATIKA adalah ilmu kesetimbangan yang menyelidiki syarat-syarat gaya yang bekerja pada sebuah benda/titik materi agar benda/titik materi tersebut setimbang.
PUSAT MASSA DAN TITIK BERAT
Pusat massa dan titik berat suatu benda memiliki pengertian yang sama, yaitu suatu titik tempat berpusatnya massa/berat dari benda tersebut. Perbedaannya adalah letak pusat massa suatu benda tidak dipengaruhi oleh medan gravitasi, sehingga letaknya tidak selalu berhimpit dengan letak titik beratnya.
1. PUSAT MASSA
Koordinat pusat massa dari benda-benda diskrit, dengan massa masing-masing M1, M2,....... , Mi ; yang terletak pada koordinat (x1,y1), (x2,y2),........, (xi,yi) adalah:
|
|
2. TITIK BERAT (X,Y)
Koordinat titik berat suatu sistem benda dengan berat masing-masing W1, W2, ........., Wi ; yang terletak pada koordinat (x1,y1), (x2,y2), ............, (xi,yi) adalah:
|
|
LETAK/POSISI TITIK BERAT
- Terletak pada perpotongan diagonal ruang untuk benda homogen berbentuk teratur.
- Terletak pada perpotongan kedua garis vertikal untuk benda sembarang.
- Bisa terletak di dalam atau diluar bendanya tergantung pada homogenitas dan bentuknya.
benda tegar
Kamis, 03 Desember 2009
momentum dan implus
Momentum dan Impuls - Presentation Transcript
- MOMENTUM & IMPULS (Rumus) Momentum: Hasil kali massa benda dengan kecepatannya (besaran vektor). p : momentum benda (kg.m/s) m : massa benda (kg) v : kecepatan benda (m/s) Perubahan momentum bersudut Pada sumbu-x: Pada sumbu-y: Impuls: Perubahan momentum benda persatuan waktu (besaran vektor). I : Impuls benda (kg.m/s) m : massa benda (kg) v : kecepatan benda (m/s) p: perubahan momentum (kg.m/s) Hukum Kekekalan Momentum Jika tidak ada gaya luar yang bekerja, momentum sistem sebelum dan sesudah tumbukan sama. atau Penerapan Pada Roket FR : gaya dorong roket (N) v : kecepatan semburan gas (m/s) m : massa gas (kg) t : perubahan waktu (s) Tumbukan Lenting Sempurna Lenting Sebagian Tidak Lenting Sama Sekali e = koefisien restitusi (0 <>
Rabu, 02 Desember 2009
Hukum kekekalan momentum
HUKUM KEKEKALAN MOMENTUM
Hukum kekekalan momentum diterapkan pada proses tumbukan semua jenis, dimana prinsip impuls mendasari proses tumbukan dua benda, yaitu I1 = -I2.
Jika dua benda A dan B dengan massa masing-masing MA dan MB serta kecepatannya masing-masing VA dan VB saling bertumbukan, maka :
MA VA + MB VB = MA VA + MB VB
VA dan VB = kecepatan benda A dan B pada saat tumbukan
VA dan VB = kecepatan benda A den B setelah tumbukan.
Dalam penyelesaian soal, searah vektor ke kanan dianggap positif, sedangkan ke kiri dianggap negatif.
Dua benda yang bertumbukan akan memenuhi tiga keadaan/sifat ditinjau dari keelastisannya,
a. ELASTIS SEMPURNA : e = 1
e = (- VA' - VB')/(VA - VB)
e = koefisien restitusi.
Disini berlaku hukum kokokalan energi den kokekalan momentum.
b. ELASTIS SEBAGIAN: 0 < e < 1
Disini hanya berlaku hukum kekekalan momentum.
Khusus untuk benda yang jatuh ke tanah den memantul ke atas lagi maka koefisien restitusinya adalah:
e = h'/h
h = tinggi benda mula-mula
h' = tinggi pantulan benda
C. TIDAK ELASTIS: e = 0
Setelah tumbukan, benda melakukan gerak yang sama dengan satu kecepatan v',
MA VA + MB VB = (MA + MB) v'
Disini hanya berlaku hukum kekekalan momentum
Contoh:
1. Sebuah bola dengan massa 0.1 kg dijatuhkan dari ketinggian 1.8 meter dan mengenai lantai, kemudian dipantulkan kembali sampai ketinggian 1.2 meter. Jika g = 10 m/det2.
Tentukanlah:
a. impuls karena beret bola ketika jatuh.
b. koefisien restitusi
Jawab:
a. Selama bola jatuh ke tanah terjadi perubahan energi potensial menjadi energi kinetik.
Ep = Ek m g h = 1/2 mv2 ® v2 = 2 gh ® v = Ö2 g h impuls karena berat ketika jatuh: I = F . Dt = m . Dv = 0.1Ö2gh = 0.1 Ö(2.10.1.8) = 0.1.6 = 0,6 N det. |
b. Koefisien restitusi:
e = Ö(h'/h) = Ö(1.2/1.8) = Ö(2/3)
2. Sebuah bola massa 0.2 kg dipukul pada waktu sedang bergerak dengan kecepatan 30 m/det. Setelah meninggalkan pemukul, bola bergerak dengan kecepatan 40 m/det berlawanan arah semula. Hitung impuls pada tumbukan tersebut !
Jawab:
Impuls = F . t = m (v2 - v1)
= 0.2 (-40 - 30)
= -14 N det
Tanda berarti negatif arah datangnya berlawanan dengan arah datangnya bola.
3. Sebuah peluru yang massanya M1 mengenai sebuah ayunan balistik yang massanya M2. Ternyata pusat massa ayunan naik setinggi h, sedangkan peluru tertinggal di dalam ayunan. Jika g = percepatan gravitasi, hitunglah kecepatan peluru pada saat ditembakkan !
Jawab:
Penyelesaian soal ini kita bagi dalam dua tahap, yaitu:
1. Gerak A - B.
Tumbukan peluru dengan ayunan adalah tidak elastis jadi kekekalan momentumnya: M1VA + M2VB = (M1 + M2) V VA = [(M1 + M2)/M1] . v |
2. Gerak B - C.
Setelah tumbukan, peluru dengan ayunan naik setinggi h, sehingga dapat diterapkan kekekalan energi:
EMB = EMC
EpB + EkB = EpC + EkC
0 + 1/2 (M1 + M2) v2 = (M1 + M2) gh + 0
Jadi kecepatan peluru: VA = [(M1 + M2)/M1] . Ö(2 gh)
d. ELASTISITAS KHUSUS DALAM ZAT PADAT
Zat adalah suatu materi yang sifat-sifatnya sama di seluruh bagian, dengan kata lain, massa terdistribusi secara merata. Jika suatu bahan (materi) berupa zat padat mendapat beban luar, seperti tarikan, lenturan, puntiran, tekanan, maka bahan tersebut akan mengalami perubahan bentuk tergantung pada jenis bahan dan besarnya pembebanan. Benda yang mampu kembali ke bentuk semula, setelah diberikan pembebanan disebut benda bersifat elastis.
Suatu benda mempunyai batas elastis. Bila batas elastis ini dilampaui maka benda akan mengalami perubahan bentuk tetap, disebut juga benda bersifat plastis.