Selasa, 10 November 2009

hukum keppler

Di dalam astronomi, tiga Hukum Gerakan Planet Kepler adalah


  • Setiap planet bergerak dengan lintasan elips, matahari berada di salah satu fokusnya.
  • Luas daerah yang disapu pada selang waktu yang sama akan selalu sama.
  • Perioda kuadrat suatu planet berbanding dengan pangkat tiga jarak rata-ratanya dari matahari.


Ketiga hukum diatas ditemukan oleh ahli matematika and astronomi jerman Johannes Kepler (1571–1630), yang menjelaskan gerakan planet di dalam tata surya. Hukum diatas menjabarkan gerakan dua benda yang saling mengorbit.

Karya Kepler didasari oleh data observasi Tycho Brahe, yang diterbitkannya sebagai 'Rudolphine tables'. Sekitar tahun 1605 Kepler menyimpulkan bahwa data posisi planet hasil observasi Brahe mengikuti rumusan matematika cukup sederhana yang tercantum diatas.

Hukum Kepler mempertanyakan kebenaran astronomi dan fisika warisan zaman Aristoteles dan Ptolemaeus. Ungkapan Kepler bahwa Bumi beredear sekeliling, berbentuk elips dan bukannya epicycle, dan membuktikan bahwa kecepatan gerak planet bervariasi, merubah astronomi dan fisika. Hampir seabad kemudian Isaac Newton mendeduksi Hukum Kepler dari rumusan hukum karyanya, hukum gerak dan hukum gravitasi Newton, dengan menggunakan Euclidean geometry klasik.

Pada era modern, hukum kepler digunakan untuk aproximasi orbit satelit dan benda-benda yang mengorbit matahari. Yang semuanya belum ditemukan pada saat Kepler hidup. (contoh: planet luar dan asteroid) Hukum ini kemudian diaplikasikan untuk semua benda kecil yang mengorbit benda lain yang jauh lebih besar, walaupun beberapa aspek seperti gesekan atmosfer (contoh: gerakan di orbit rendah), atau relativitas (contoh: prosesi preihelion merkurius), dan keberadaan benda lainnya dapat membuat hasil hitungan tidak akurat dalam berbagai keperluan.


Daftar isi

[sembunyikan]

[sunting] Introduksi Tiga Hukum Kepler

[sunting] Secara Umum

Hukum hukum ini menjabarkan gerakan dua badan yang mengorbit satu sama lainnya. Masa dari kedua badan ini bisa hampir sama, sebagai contoh CharonPluto (~1:10), proporsi yang kecil, sebagain contol. BulanBumi(~1:100), atau perbandingan proporsi yang besar, sebagai contoh MerkuriusMatahari (~1:10,000,000).

Dalam semua contoh diatas kedua badan mengorbit mengelilingi satu pusat masa, barycenter, tidak satupun berdiri secara sepenuhnya di atas fokus elips. Namun kedua orbit itu adalah elips dengan satu titik fokus di barycenter. Jika ratio masanya besar, sebagai contoh planet mengelilingi matahari, barycenternya terletak jauh di tengah obyek yang besar, dekat di titik masanya. Di dalam contoh ini, perlu digunakan instrumen presisi canggih untuk mendeteksi pemisahan barycenter dari titik masa benda yang lebih besar. Jadi, hukum Kepler pertama secara akurat menjabarkan orbit sebuah planet mengelilingi matahari.

Karena Kepler menulis hukumnya untuk aplikasi orbit planet dan matahari, dan tidak mengenal generalitas hukumnya, artikel wikini ini hanya akan mendiskusikan hukum diatas sehubingan dengan matahari dan planet-planetnya.


[sunting] Hukum Pertama

Figure 2: Hukum Kepler pertama menempatkan Matahari di satu titik fokus edaran elips.
"Setiap planet bergerak dengan lintasan elips, matahari berada di salah satu fokusnya."

Pada zaman Kepler, klaim diatas adalah radikal. Kepercayaan yang berlaku (terutama yang berbasis teori epicycle) adalah bahwa orbit harus didasari lingkaran sempurna. Pengamatan ini sangat penting pada saat itu karena mendukung pandangan alam semesta menurut Kopernikus. Ini tidak berarti ia kehilangan relevansi dalam konteks yang lebih modern.

Meski secara teknis elips yang tidak sama dengan lingkaran, tetapi sebagian besar planet planet mengikuti orbit yang bereksentrisitas rendah, jadi secara kasar bisa dibilang mengaproximasi lingkaran. Jadi, kalau ditilik dari observasi jalan edaran planet, tidak jelas kalau orbit sebuah planet adalah elips. Namun, dari bukti perhitungan Kepler, orbit orbit itu adalah elips, yang juga memeperbolehkan benda-benda angkasa yang jauh dari matahari untuk memiliki orbit elips. Benda-benda angkasa ini tentunya sudah banyak dicatat oleh ahli astronomi, seperti komet dan asteroid. Sebagai contoh Pluto, yang diobservasi pada akhir tahun 1930, terutama terlambat diketemukan karena bentuk orbitnya yang sangat elipse dan kecil ukurannya.

[sunting] Hukum Kedua

Figure 3: Illustrasi hukum Kepler kedua. Bahwa Planet bergerak lebih cepat didekat matahari dan lambat dijarak yang jauh. Sehingga jumlah area adalah sama pada jangka waktu tertentu.
"Luas daerah yang disapu pada selang waktu yang sama akan selalu sama."

Secara matematis:

\frac{d}{dt}(\frac{1}{2}r^2 \dot\theta) = 0

dimana \frac{1}{2}r^2 \dot\theta adalah "areal velocity".

[sunting] Hukum Ketiga

Planet yang terletak jauh dari matahari memiliki perioda orbit yang lebih panjang dari planet yang dekat letaknya. Hukum Kepelr ketiga menjabarkan hal tersebut secara kuantitativ.


"Perioda kuadrat suatu planet berbanding dengan pangkat tiga jarak rata-ratanya dari matahari."

Secara matematis:

 {P^2} \propto  {a^3}

dimana P adalah period orbit planet dan a adalah axis semimajor orbitnya.

Konstant proporsionalitasnya adalah semua sama untuk planet yang mengedar matahari.

\frac{P_{\rm planet}^2}{a_{\rm planet}^3} = \frac{P_{\rm earth}^2}{a_{\rm earth}^3}.

GLBB

diartikan sebagai gerak benda dalam lintasan lurus dengan percepatan tetap. Yang dimaksudkan dengan percepatan tetap adalah perubahan kecepatan gerak benda yang berlangsung secara tetap dari waktu ke waktu. Mula-mula dari keadaan diam, benda mulai bergerak, semakin lama semakin cepat dan kecepatan gerak benda tersebut berubah secara teratur. Perubahan kecepatan bisa berarti tejadi pertambahan kecepatan atau pengurangan kecepatan. Pengurangan kecepatan terjadi apabila benda akan berhenti. dalam hal ini benda mengalami perlambatan tetap. Pada pembahasan ini kita tidak menggunakan istilah perlambatan untuk benda yang mengalami pengurangan kecepatan secara teratur. Kita tetap menamakannya percepatan, hanya nilainya negatif. Jadi perlambatan sama dengan percepatan yang bernilai negatif.

Dalam kehidupan sehari-hari sangat sulit ditemukan benda yang melakukan gerak lurus berubah beraturan, di mana perubahan kecepatannya terjadi secara teratur, baik ketika hendak bergerak dari keadaan diam maupun ketika hendak berhenti. walaupun demikian, banyak situasi praktis terjadi ketika percepatan konstan/tetap atau mendekati konstan, yaitu jika percepatan tidak berubah terhadap waktu (ingat bahwa yang dimaksudkan di sini adalah percepatan tetap, bukan kecepatan tetap. Beda lho….).

Penurunan Rumus Gerak Lurus Berubah Beraturan (GLBB)

Rumus dalam fisika sangat membantu kita dalam menjelaskan konsep fisika secara singkat dan praktis. Jadi cobalah untuk mencintai rumus, he2…. Dalam fisika, anda tidak boleh menghafal rumus. Pahami saja konsepnya, maka anda akan mengetahui dan memahami cara penurunan rumus tersebut. Hafal rumus akan membuat kita cepat lupa dan sulit menyelesaikan soal yang bervariasi….

Sekarang kita coba menurunkan rumus-rumus dalam Gerak Lurus Berubah Beraturan (GLBB). Pahami perlahan-lahan ya….

Pada penjelasan di atas, telah disebutkan bahwa dalam GLBB, percepatan benda tetap atau konstan alias tidak berubah. (kalau di GLB, yang tetap adalah kecepatan). Nah, kalau percepatan benda tersebut tetap sejak awal benda tersebut bergerak, maka kita bisa mengatakan bahwa percepatan sesaat dan percepatan rata-ratanya sama. Bisa ya ? ingat bahwa percepatan benda tersebut tetap setiap saat, dengan demikian percepatan sesaatnya tetap. Percepatan rata-rata sama dengan percepatan sesaat karena baik percepatan awal maupun percepatan akhirnya sama, di mana selisih antara percepatan awal dan akhir sama dengan nol.

Jika sudah paham, sekarang kita mulai menurunkan rumus-rumus alias persamaan-persamaan.

Pada pembahasan mengenai percepatan, kita telah menurunkan persamaan/rumus percepatan rata-rata, di mana

t0 adalah waktu awal ketika benda hendak bergerak, t adalah waktu akhir. Karena pada saat t0 benda belum bergerak maka kita bisa mengatakan t0 (waktu awal) = 0. Nah sekarang persamaan berubah menjadi :

Satu masalah umum dalam GLBB adalah menentukan kecepatan sebuah benda pada waktu tertentu, jika diketahui percepatannya (sekali lagi ingat bahwa percepatan tetap). Untuk itu, persamaan percepatan yang kita turunkan di atas dapat digunakan untuk menyatakan persamaan yang menghubungkan kecepatan pada waktu tertentu (vt), kecepatan awal (v0) dan percepatan (a). sekarang kita obok2 persamaan di atas…. Jika dibalik akan menjadi

ini adalah salah satu persamaan penting dalam GLBB, untuk menentukan kecepatan benda pada waktu tertentu apabila percepatannya diketahui. Jangan dihafal, pahami saja cara penurunannya dan rajin latihan soal biar semakin diingat….

Selanjutnya, mari kita kembangkan persamaan di atas (persamaan I GLBB) untuk mencari persamaan yang digunakan untuk menghitung posisi benda setelah waktu t ketika benda tersebut mengalami percepatan tetap.

Pada pembahasan mengenai kecepatan, kita telah menurunkan persamaan kecepataan rata-rata

Karena pada GLBB kecepatan rata-rata bertambah secara beraturan, maka kecepatan rata-rata akan berada di tengah-tengah antara kecepatan awal dan kecepatan akhir;

Persamaan ini berlaku untuk percepatan konstan dan tidak berlaku untuk gerak yang percepatannya tidak konstan. Kita tulis kembali persamaan a :

Persamaan ini digunakan untuk menentukan posisi suatu benda yang bergerak dengan percepatan tetap. Jika benda mulai bergerak pada titik acuan = 0 (atau x0 = 0), maka persamaan II dapat ditulis menjadi

Sekarang kita turunkan persamaan/rumus yang dapat digunakan apabila t (waktu) tidak diketahui.

Sekarang kita subtitusikan persamaan ini dengan nilai t pada persamaan c

Terdapat empat persamaan yang menghubungkan posisi, kecepatan, percepatan dan waktu, jika percepatan (a) konstan, antara lain :

Persamaan di atas tidak berlaku jika percepatan tidak konstan/tetap. Ingat bahwa x menyatakan posisi/kedudukan, bukan jarak dan ( x – x0 ) adalah perpindahan (s)

Latihan Soal

  1. Sebuah mobil sedang bergerak dengan kecepatan 20 m/s ke utara mengalami percepatan tetap 4 m/s2 selama 2,5 sekon. Tentukan kecepatan akhirnya

Panduan jawaban :

Pada soal, yang diketahui adalah kecepatan awal (v0) = 20 m/s, percepatan (a) = 4 m/s dan waktu tempuh (t) = 2,5 sekon. Karena yang diketahui adalah kecepatan awal, percepatan dan waktu tempuh dan yang ditanyakan adalah kecepatan akhir, maka kita menggunakan persamaan/rumus

  1. Sebuah pesawat terbang mulai bergerak dan dipercepat oleh mesinnya 2 m/s2 selama 30,0 s sebelum tinggal landas. Berapa panjang lintasan yang dilalui pesawat selama itu ?

Panduan Jawaban

Yang diketahui adalah percepatan (a) = 2 m/s2 dan waktu tempuh 30,0 s. wah gawat, yang diketahui Cuma dua…. Bingung, tolooooooooooooooooong dong ding dong… pake rumus yang mana, PAKE RUMUS GAWAT DARURAT. He2……

Santai saja. Kalau ada soal seperti itu, kamu harus pake logika juga. Ada satu hal yang tersembunyi, yaitu kecepatan awal (v0). Sebelum bergerak, pesawat itu pasti diam. Berarti v0 = 0.

Yang ditanyakan pada soal itu adalah panjang lintasan yang dilalui pesawat. Tulis dulu persamaannya (hal ini membantu kita untuk mengecek apa saja yang dibutuhkan untuk menyelesaikan soal tersebut)

Pada soal di atas, S0 = 0, karena pesawat bergerak dari titik acuan nol. Karena semua telah diketahui maka kita langsung menghitung panjang lintasan yang ditempuh pesawat

Ternyata, panjang lintasan yang ditempuh pesawat adalah 900 m.

  1. sebuah mobil bergerak pada lintasan lurus dengan kecepatan 60 km/jam. karena ada rintangan, sopir menginjak pedal rem sehingga mobil mendapat perlambatan (percepatan yang nilainya negatif) 8 m/s2. berapa jarak yang masih ditempuh mobil setelah pengereman dilakukan ?

Panduan jawaban

Untuk menyelesaikan soal ini dibutuhkan ketelitian dan logika. Perhatikan bahwa yang ditanyakan adalah jarak yang masih ditempuh setelah pengereman dilakukan. Ini berarti setelah pengereman, mobil tersebut berhenti. dengan demikian kecepatan akhir mobil (vt) = 0. karena kita menghitung jarak setelah pengereman, maka kecepatan awal (v0) mobil = 60 km/jam (dikonversi terlebih dahulu menjadi m/s, 60 km/jam = 16,67 m/s ). perlambatan (percepatan yang bernilai negatif) yang dialami mobil = -8 m/s2. karena yang diketahui adalah vt, vo dan a, sedangkan yang ditanyakan adalah s (t tidak diketahui), maka kita menggunakan persamaan

Dengan demikian, jarak yang masih ditempuh mobil setelah pengereman hingga berhenti = 17,36 meter (yang ditanyakan adalah jarak(besaran skalar))

GRAFIK GLBB

Grafik percepatan terhadap waktu

Gerak lurus berubah beraturan adalah gerak lurus dengan percepatan tetap. Oleh karena itu, grafik percepatan terhadap waktu (a-t) berbentuk garis lurus horisontal, yang sejajar dengan sumbuh t. lihat grafik a – t di bawah

Grafik kecepatan terhadap waktu (v-t) untuk Percepatan Positif

Grafik kecepatan terhadap waktu (v-t), dapat dikelompokkan menjadi dua bagian. Pertama, grafiknya berbentuk garis lurus miring ke atas melalui titik acuan O(0,0), seperti pada gambar di bawah ini. Grafik ini berlaku apabila kecepatan awal (v0) = 0, atau dengan kata lain benda bergerak dari keadaan diam.

Kedua, jika kecepatan awal (v0) tidak nol, grafik v-t tetap berbentuk garis lurus miring ke atas, tetapi untuk t = 0, grafik dimulai dari v0. lihat gambar di bawah

Nilai apa yang diwakili oleh garis miring pada grafik tersebut ?

Pada pelajaran matematika SMP, kita sudah belajar mengenai grafik seperti ini. Persamaan matematis y = mx + n menghasilkan grafik y terhadap x ( y sumbu tegak dan x sumbu datar) seperti pada gambar di bawah.

Kemiringan grafik (gradien) yaitu tangen sudut terhadap sumbu x positif sama dengan nilai m dalam persamaan y = n + m x.

Persamaan y = n + mx mirip dengan persamaan kecepatan GLBB v = v0 + at. Berdasarkan kemiripan ini, jika kemiringan grafik y – x sama dengan m, maka kita dapat mengatakan bahwa kemiringan grafik v-t sama dengan a.

Jadi kemiringan pada grafik kecepatan terhadap waktu (v-t) menyatakan nilai percepatan (a).

Grafik kecepatan terhadap waktu (v-t) untuk Perlambatan (Percepatan Negatif)

perlambatan atau percepatan negatif menyebabkan berkurangnya kecepatan. Contoh grafik kecepatan terhadap waktu (v-t) untuk percepatan negatif dapat anda lihat pada gambar di bawah ini.

Grafik Kedudukan Terhadap Waktu (x-t)

Persamaan kedudukan suatu benda pada GLBB telah kita turunkan pada awal pokok bahasan ini, yakni

Kedudukan (x) merupakan fungsi kuadrat dalam t. dengan demikian, grafik x – t berbentuk parabola. Untuk nilai percepatan positif (a > 0), grafik x – t berbentuk parabola terbuka ke atas, sebagaimana tampak pada gambar di bawah ini.

Apabila percepatan bernilai negatif (a <>


pertanyaan piter :

Tolong kasih penjelan untuk soal ini yach,,he,,he,

1. x(t ) = 4t3 + 8t² + 6t – 5
a. Berapa kecepatan rata-rata pada t0.5 dan
t 2.5
b. Berapa kecepatan sesaat pada t 2
b. Berapa percepatannya ratanya,?

Terimakasih,,he,,he,,salam gbu

@ Jawaban :

a) Kecepatan rata-rata pada t = 0,5 dan t = 2,5

t1 = 0,5 dan t2 = 2,5

x1 = 4t3 + 8t² + 6t – 5

= 4(0,5)3 + 8(0,5)² + 6(0,5) – 5

= 4(0,125) + 8(0,25) + 6(0,5) – 5

= 0,5 + 2 + 3 – 5

= 0,5

x2 = 4t3 + 8t² + 6t – 5

= 4(2,5)3 + 8(2,5)² + 6(2,5) – 5

= 4(15,625) + 8(6,25) + 6(2,5) – 5

= 62,5 + 50 + 15 – 5

= 122,5

b) Kecepatan sesaat pada t = 2

v = 3(4t2) + 2(8t) + 6

v = 12t2 + 16t + 6

v = 12 (2)2 + 16(2) + 6

v = 48 + 32 + 6

v = 86

Kecepatan sesaat pada t = 2 adalah 86

c) Berapa percepatan rata-ratanya ?

v1 = 12t12 + 16t1 + 6

v2 = 12t22 + 16t2 + 6

De piter, t1 dan t2 berapa ?

Masukan saja nilai t1 dan t2 ke dalam persamaan v1 dan v2. Setelah itu cari arata-rata.