Kamis, 10 Juni 2010

hukum termodinaka 2

Sebuah sistem termodinamika

Termodinamika (bahasa Yunani: thermos = 'panas' and dynamic = 'perubahan') adalah fisika energi , panas, kerja, entropi dan kespontanan proses. Termodinamika berhubungan dekat dengan mekanika statistik di mana banyak hubungan termodinamika berasal.

Pada sistem di mana terjadi proses perubahan wujud atau pertukaran energi, termodinamika klasik tidak berhubungan dengan kinetika reaksi (kecepatan suatu proses reaksi berlangsung). Karena alasan ini, penggunaan istilah "termodinamika" biasanya merujuk pada termodinamika setimbang. Dengan hubungan ini, konsep utama dalam termodinamika adalah proses kuasistatik, yang diidealkan, proses "super pelan". Proses termodinamika bergantung-waktu dipelajari dalam termodinamika tak-setimbang.

Karena termodinamika tidak berhubungan dengan konsep waktu, telah diusulkan bahwa termodinamika setimbang seharusnya dinamakan termostatik.

Sistem termodinamika

Sistem termodinamika adalah bagian dari jagat raya yang diperhitungkan. Sebuah batasan yang nyata atau imajinasi memisahkan sistem dengan jagat raya, yang disebut lingkungan. Klasifikasi sistem termodinamika berdasarkan pada sifat batas sistem-lingkungan dan perpindahan materi, kalor dan entropi antara sistem dan lingkungan.

Ada tiga jenis sistem berdasarkan jenis pertukaran yang terjadi antara sistem dan lingkungan:

  • sistem terisolasi: tak terjadi pertukaran panas, benda atau kerja dengan lingkungan. Contoh dari sistem terisolasi adalah wadah terisolasi, seperti tabung gas terisolasi.
  • sistem tertutup: terjadi pertukaran energi (panas dan kerja) tetapi tidak terjadi pertukaran benda dengan lingkungan. Rumah hijau adalah contoh dari sistem tertutup di mana terjadi pertukaran panas tetapi tidak terjadi pertukaran kerja dengan lingkungan. Apakah suatu sistem terjadi pertukaran panas, kerja atau keduanya biasanya dipertimbangkan sebagai sifat pembatasnya:
    • pembatas adiabatik: tidak memperbolehkan pertukaran panas.
    • pembatas rigid: tidak memperbolehkan pertukaran kerja.
  • sistem terbuka: terjadi pertukaran energi (panas dan kerja) dan benda dengan lingkungannya. Sebuah pembatas memperbolehkan pertukaran benda disebut permeabel. Samudra merupakan contoh dari sistem terbuka.

Dalam kenyataan, sebuah sistem tidak dapat terisolasi sepenuhnya dari lingkungan, karena pasti ada terjadi sedikit pencampuran, meskipun hanya penerimaan sedikit penarikan gravitasi. Dalam analisis sistem terisolasi, energi yang masuk ke sistem sama dengan energi yang keluar dari sistem.

Keadaan termodinamika

Ketika sistem dalam keadaan seimbang dalam kondisi yang ditentukan, ini disebut dalam keadaan pasti (atau keadaan sistem).

Untuk keadaan termodinamika tertentu, banyak sifat dari sistem dispesifikasikan. Properti yang tidak tergantung dengan jalur di mana sistem itu membentuk keadaan tersebut, disebut fungsi keadaan dari sistem. Bagian selanjutnya dalam seksi ini hanya mempertimbangkan properti, yang merupakan fungsi keadaan.

Jumlah properti minimal yang harus dispesifikasikan untuk menjelaskan keadaan dari sistem tertentu ditentukan oleh Hukum fase Gibbs. Biasanya seseorang berhadapan dengan properti sistem yang lebih besar, dari jumlah minimal tersebut.

Pengembangan hubungan antara properti dari keadaan yang berlainan dimungkinkan. Persamaan keadaan adalah contoh dari hubungan tersebut.

Hukum-hukum Dasar Termodinamika

Terdapat empat Hukum Dasar yang berlaku di dalam sistem termodinamika, yaitu:

  • Hukum Awal (Zeroth Law) Termodinamika
Hukum ini menyatakan bahwa dua sistem dalam keadaan setimbang dengan sistem ketiga, maka ketiganya dalam saling setimbang satu dengan lainnya.
  • Hukum Pertama Termodinamika
Hukum ini terkait dengan kekekalan energi. Hukum ini menyatakan perubahan energi dalam dari suatu sistem termodinamika tertutup sama dengan total dari jumlah energi kalor yang disuplai ke dalam sistem dan kerja yang dilakukan terhadap sistem.
  • Hukum kedua Termodinamika
Hukum kedua termodinamika terkait dengan entropi. Hukum ini menyatakan bahwa total entropi dari suatu sistem termodinamika terisolasi cenderung untuk meningkat seiring dengan meningkatnya waktu, mendekati nilai maksimumnya.
  • Hukum ketiga Termodinamika
Hukum ketiga termodinamika terkait dengan temperatur nol absolut. Hukum ini menyatakan bahwa pada saat suatu sistem mencapai temperatur nol absolut, semua proses akan berhenti dan entropi sistem akan mendekati nilai minimum. Hukum ini juga menyatakan bahwa entropi benda berstruktur kristal sempurna pada temperatur nol absolut bernilai nol.

Hukum termodinamika kebenarannya sangat umum, dan hukum-hukum ini tidak bergantung kepada rincian dari interaksi atau sistem yang diteliti. Ini berarti mereka dapat diterapkan ke sistem di mana seseorang tidak tahu apa pun kecual perimbangan transfer energi dan wujud di antara mereka dan lingkungan. Contohnya termasuk perkiraan Einstein tentang emisi spontan dalam abad ke-20 dan riset sekarang ini tentang termodinamika benda hitam.

termodinamika (isobarik, isotermik, isokhorik, adiabatik)

Termodinamika

Termodinamika adalah kajian tentang kalor (panas) yang berpindah. Dalam termodinamika kamu akan banyak membahas tentang sistem dan lingkungan. Kumpulan benda-benda yang sedang ditinjau disebut sistem, sedangkan semua yang berada di sekeliling (di luar) sistem disebut lingkungan.

Usaha Luar

Usaha luar dilakukan oleh sistem, jika kalor ditambahkan (dipanaskan) atau kalor dikurangi (didinginkan) terhadap sistem. Jika kalor diterapkan kepada gas yang menyebabkan perubahan volume gas, usaha luar akan dilakukan oleh gas tersebut. Usaha yang dilakukan oleh gas ketika volume berubah dari volume awal V1 menjadi volume akhir V2 pada tekanan p konstan dinyatakan sebagai hasil kali tekanan dengan perubahan volumenya.

W = pV= p(V2V1)

Secara umum, usaha dapat dinyatakan sebagai integral tekanan terhadap perubahan volume yang ditulis sebagai

pers01Tekanan dan volume dapat diplot dalam grafik pV. jika perubahan tekanan dan volume gas dinyatakan dalam bentuk grafik pV, usaha yang dilakukan gas merupakan luas daerah di bawah grafik pV. hal ini sesuai dengan operasi integral yang ekuivalen dengan luas daerah di bawah grafik.

fig2004Gas dikatakan melakukan usaha apabila volume gas bertambah besar (atau mengembang) dan V2 > V1. sebaliknya, gas dikatakan menerima usaha (atau usaha dilakukan terhadap gas) apabila volume gas mengecil atau V2 < V1 dan usaha gas bernilai negatif.

Energi Dalam

Suatu gas yang berada dalam suhu tertentu dikatakan memiliki energi dalam. Energi dalam gas berkaitan dengan suhu gas tersebut dan merupakan sifat mikroskopik gas tersebut. Meskipun gas tidak melakukan atau menerima usaha, gas tersebut dapat memiliki energi yang tidak tampak tetapi terkandung dalam gas tersebut yang hanya dapat ditinjau secara mikroskopik.

Berdasarkan teori kinetik gas, gas terdiri atas partikel-partikel yang berada dalam keadaan gerak yang acak. Gerakan partikel ini disebabkan energi kinetik rata-rata dari seluruh partikel yang bergerak. Energi kinetik ini berkaitan dengan suhu mutlak gas. Jadi, energi dalam dapat ditinjau sebagai jumlah keseluruhan energi kinetik dan potensial yang terkandung dan dimiliki oleh partikel-partikel di dalam gas tersebut dalam skala mikroskopik. Dan, energi dalam gas sebanding dengan suhu mutlak gas. Oleh karena itu, perubahan suhu gas akan menyebabkan perubahan energi dalam gas. Secara matematis, perubahan energi dalam gas dinyatakan sebagai

untuk gas monoatomik

pers02

untuk gas diatomik

pers03

Dimana U adalah perubahan energi dalam gas, n adalah jumlah mol gas, R adalah konstanta umum gas (R = 8,31 J mol−1 K−1, danT adalah perubahan suhu gas (dalam kelvin).

Hukum I Termodinamika

Jika kalor diberikan kepada sistem, volume dan suhu sistem akan bertambah (sistem akan terlihat mengembang dan bertambah panas). Sebaliknya, jika kalor diambil dari sistem, volume dan suhu sistem akan berkurang (sistem tampak mengerut dan terasa lebih dingin). Prinsip ini merupakan hukum alam yang penting dan salah satu bentuk dari hukum kekekalan energi.

Gambar

Sistem yang mengalami perubahan volume akan melakukan usaha dan sistem yang mengalami perubahan suhu akan mengalami perubahan energi dalam. Jadi, kalor yang diberikan kepada sistem akan menyebabkan sistem melakukan usaha dan mengalami perubahan energi dalam. Prinsip ini dikenal sebagai hukum kekekalan energi dalam termodinamika atau disebut hukum I termodinamika. Secara matematis, hukum I termodinamika dituliskan sebagai

Q = W + U

Dimana Q adalah kalor, W adalah usaha, dan U adalah perubahan energi dalam. Secara sederhana, hukum I termodinamika dapat dinyatakan sebagai berikut.

Jika suatu benda (misalnya krupuk) dipanaskan (atau digoreng) yang berarti diberi kalor Q, benda (krupuk) akan mengembang atau bertambah volumenya yang berarti melakukan usaha W dan benda (krupuk) akan bertambah panas (coba aja dipegang, pasti panas deh!) yang berarti mengalami perubahan energi dalam U.

Proses Isotermik

Suatu sistem dapat mengalami proses termodinamika dimana terjadi perubahan-perubahan di dalam sistem tersebut. Jika proses yang terjadi berlangsung dalam suhu konstan, proses ini dinamakan proses isotermik. Karena berlangsung dalam suhu konstan, tidak terjadi perubahan energi dalam (U = 0) dan berdasarkan hukum I termodinamika kalor yang diberikan sama dengan usaha yang dilakukan sistem (Q = W).

Proses isotermik dapat digambarkan dalam grafik pV di bawah ini. Usaha yang dilakukan sistem dan kalor dapat dinyatakan sebagai

pers04Dimana V2 dan V1 adalah volume akhir dan awal gas.

isothermal_process

Proses Isokhorik

Jika gas melakukan proses termodinamika dalam volume yang konstan, gas dikatakan melakukan proses isokhorik. Karena gas berada dalam volume konstan (V = 0), gas tidak melakukan usaha (W = 0) dan kalor yang diberikan sama dengan perubahan energi dalamnya. Kalor di sini dapat dinyatakan sebagai kalor gas pada volume konstan QV.

QV = U

Proses Isobarik

Jika gas melakukan proses termodinamika dengan menjaga tekanan tetap konstan, gas dikatakan melakukan proses isobarik. Karena gas berada dalam tekanan konstan, gas melakukan usaha (W = pV). Kalor di sini dapat dinyatakan sebagai kalor gas pada tekanan konstan Qp. Berdasarkan hukum I termodinamika, pada proses isobarik berlaku

pers05Sebelumnya telah dituliskan bahwa perubahan energi dalam sama dengan kalor yang diserap gas pada volume konstan

QV =U

Dari sini usaha gas dapat dinyatakan sebagai

W = QpQV

Jadi, usaha yang dilakukan oleh gas (W) dapat dinyatakan sebagai selisih energi (kalor) yang diserap gas pada tekanan konstan (Qp) dengan energi (kalor) yang diserap gas pada volume konstan (QV).

diag11

Proses Adiabatik

Dalam proses adiabatik tidak ada kalor yang masuk (diserap) ataupun keluar (dilepaskan) oleh sistem (Q = 0). Dengan demikian, usaha yang dilakukan gas sama dengan perubahan energi dalamnya (W = U).

Jika suatu sistem berisi gas yang mula-mula mempunyai tekanan dan volume masing-masing p1 dan V1 mengalami proses adiabatik sehingga tekanan dan volume gas berubah menjadi p2 dan V2, usaha yang dilakukan gas dapat dinyatakan sebagai

pers06Dimana γ adalah konstanta yang diperoleh perbandingan kapasitas kalor molar gas pada tekanan dan volume konstan dan mempunyai nilai yang lebih besar dari 1 (γ > 1).

341px-adiabaticsvg

Proses adiabatik dapat digambarkan dalam grafik pV dengan bentuk kurva yang mirip dengan grafik pV pada proses isotermik namun dengan kelengkungan yang lebih curam.

Selasa, 16 Maret 2010

hidrodinamika

Dinamika fluida adalah subdisiplin dari mekanika fluida yang mempelajari fluida bergerak. Fluida terutama cairan dan gas. Penyelsaian dari masalah dinamika fluida biasanya melibatkan perhitungan banyak properti dari fluida, seperti kecepatan, tekanan, kepadatan, dan suhu, sebagai fungsi ruang dan waktu. Disiplini ini memiliki beberapa subdisiplin termasuk aerodinamika (penelitian gas) dan hidrodinamika (penelitian cairan). Dinamika fluida memliki aplikasi yang luas. Contohnya, ia digunakan dalam menghitung gaya dan moment pada pesawat, mass flow rate dari petroleum dalam jalur pipa, dan perkiraan pola cuaca, dan bahkan teknik lalu lintas, di mana lalu lintas diperlakukan sebagai fluid yang berkelanjutan. Dinamika fluida menawarkan struktur matematika yang membawahi disiplin praktis tersebut yang juga seringkali memerlukan hukum empirik dan semi-empirik, diturunkan dari pengukuran arus, untuk menyelesaikan masalah praktikal.

hidrostatik

Statika fluida, kadang disebut juga hidrostatika, adalah cabang ilmu yang mempelajari fluida dalam keadaan diam, dan merupakan sub-bidang kajian mekanika fluida. Istilah ini biasanya merujuk pada penerapan matematika pada subyek tersebut. Statika fluida mencakup kajian kondisi fluida dalam keadaan kesetimbangan yang stabil. Penggunaan fluida untuk melakukan kerja disebut hidrolika, dan ilmu mengenai fluida dalam keadaan bergerak disebut sebagai dinamika fluida.

Tekanan statik di dalam fluida

Karena sifatnya yang tidak dapat dengan mudah dimampatkan, fluida dapat menghasilkan tekanan normal pada semua permukaan yang berkontak dengannya. Pada keadaan diam (statik), tekanan tersebut bersifat isotropik, yaitu bekerja dengan besar yang sama ke segala arah. Karakteristik ini membuat fluida dapat mentransmisikan gaya sepanjang sebuah pipa atau tabung, yaitu, jika sebuah gaya diberlakukan pada fluida dalam sebuah pipa, maka gaya tersebut akan ditransmisikan hingga ujung pipa. Jika terdapat gaya lawan di ujung pipa yang besarnya tidak sama dengan gaya yang ditransmisikan, maka fluida akan bergerak dalam arah yang sesuai dengan arah gaya resultan.

Konsepnya pertama kali diformulasikan, dalam bentuk yang agak luas, oleh matematikawan dan filsuf Perancis, Blaise Pascal pada 1647 yang kemudian dikenal sebagai Hukum Pascal. Hukum ini mempunyai banyak aplikasi penting dalam hidrolika. Galileo Galilei, juga adalah bapak besar dalam hidrostatika.

[sunting] Tekanan hidrostatik

Sevolume kecil fluida pada kedalaman tertentu dalam sebuah bejana akan memberikan tekanan ke atas untuk mengimbangi berat fluida yang ada di atasnya. Untuk suatu volume yang sangat kecil, tegangan adalah sama di segala arah, dan berat fluida yang ada di atas volume sangat kecil tersebut ekuivalen dengan tekanan yang dirumuskan sebagai berikut

\ P = \rho g h

dengan (dalam satuan SI),

P adalah tekanan hidrostatik (dalam pascal);

ρ adalah kerapatan fluida (dalam kilogram per meter kubik);

g adalah percepatan gravitasi (dalam meter per detik kuadrat);

h adalah tinggi kolom fluida (dalam meter).

fluida

Fluida adalah sub-himpunan dari fase benda, termasuk cairan, gas, plasma, dan padat plastik.

Fluida memilik sifat tidak menolak terhadap perubahan bentuk dan kemampuan untuk mengalir (atau umumnya kemampuannya untuk mengambil bentuk dari wadah mereka). Sifat ini biasanya dikarenakan sebuah fungsi dari ketidakmampuan mereka mengadakan tegangan geser(shear stress) dalam ekuilibrium statik. Konsekuensi dari sifat ini adalah hukum Pascal yang menekankan pentingnya tekanan dalam mengkarakterisasi bentuk fluid. Dapat disimpulkan bahwa fluida adalah zat atau entitas yang terdeformasi secara berkesinambungan apabila diberi tegangan geser walau sekecil apapun tegangan geser itu.

Fluid dapat dikarakterisasikan sebagai:

- bergantung dari cara "stress" bergantung ke "strain" dan turunannya.

Fluida juga dibagi menjadi cairan dan gas. Cairan membentuk permukaan bebas (yaitu, permukaan yang tidak diciptakan oleh bentuk wadahnya), sedangkan gas tidak.

titik berat

STATIKA adalah ilmu kesetimbangan yang menyelidiki syarat-syarat gaya yang bekerja pada sebuah benda/titik materi agar benda/titik materi tersebut setimbang.

PUSAT MASSA DAN TITIK BERAT

Pusat massa dan titik berat suatu benda memiliki pengertian yang sama, yaitu suatu titik tempat berpusatnya massa/berat dari benda tersebut. Perbedaannya adalah letak pusat massa suatu benda tidak dipengaruhi oleh medan gravitasi, sehingga letaknya tidak selalu berhimpit dengan letak titik beratnya.

1. PUSAT MASSA

Koordinat pusat massa dari benda-benda diskrit, dengan massa masing-masing M1, M2,....... , Mi ; yang terletak pada koordinat (x1,y1), (x2,y2),........, (xi,yi) adalah:

X = (å Mi . Xi)/(Mi)

Y = (å Mi . Yi)/(Mi)

2. TITIK BERAT (X,Y)

Koordinat titik berat suatu sistem benda dengan berat masing-masing W1, W2, ........., Wi ; yang terletak pada koordinat (x1,y1), (x2,y2), ............, (xi,yi) adalah:

X = (å Wi . Xi)/(Wi)

Y = (å Wi . Yi)/(Wi)

LETAK/POSISI TITIK BERAT

  1. Terletak pada perpotongan diagonal ruang untuk benda homogen berbentuk teratur.
  2. Terletak pada perpotongan kedua garis vertikal untuk benda sembarang.
  3. Bisa terletak di dalam atau diluar bendanya tergantung pada homogenitas dan bentuknya.

benda tegar

Benda tegar adalah istilah yang sering digunakan dalam dunia Fisika untuk menyatakan suatu benda yang tidak akan berubah bentuknya setelah diberikan suatu gaya pada benda itu. Pada sebuah benda tegar, setiap titik harus selalu berada pada jarak yang sama dengan titik-titik lainya.